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Figure S13 Example monthly temperature anomaly fields for 2000.

Table S1. HadCRUT5 uncertainty model components for the non-filled dataset and the
HadCRUTS5 analysis.

Introduction

In this document, we provide additional methodological details and results in support of
information provided in the main article and as a guide to users of the HadCRUT5 dataset. We
include diagnostics supporting the values of analysis hyperparameters used, results of a
sensitivity analysis for choices in spatial analysis masking, additional comparisons to the
results of other analyses and example comparisons of monthly fields for the HadCRUT5 non-
infilled dataset and HadCRUT5 analysis.

Text S1 presents an overview of the error model structure for the HadCRUT5 non-infilled data
set and for the HadCRUTS5 analysis, with a summary of error model components provided in
Table S1. Text S2 presents methodological descriptions for merging of land and ocean data
while methods for time series calculation are described in Text S3 and S4, based on methods
published in Kennedy et al. (2011), Morice et al. (2012) and Kennedy et al. (2019). Where there
are modifications to the previously published methods those modifications are stated in these
sections. Text S5 provides additional information on the estimation of covariance function
hyperparameters for the HadCRUTS5 analysis. Text S6 describes diagnostics in support of the
analysis masking criteria.

Figures S1 and S2 show the results of monthly hyperparameter optimization for land air
temperature and sea-surface temperature anomaly fields, along with the fixed
hyperparameter values used in the HadCRUT5 analysis, derived as the average of monthly
hyperparameters in the 1961-1990 climatology period.

Figures S3 to S6 demonstrate the sensitivity analysis of our key results to choices in our
analysis masking criteria. Figures S7 and S8 demonstrate the ensemble spread for the
HadCRUTS5 analysis without and with masking, showing the limitations of our prior model for
anomaly variability and the sensitivity of the analysis to our simple prior model in regions with
weak observational constraint. These figures are provided in support of the choice to mask
regions of weak observational constraint from the HadCRUTS5 analysis.

We include a comparison of global average temperature anomaly series and uncertainties for
the HadCRUTS5 analysis with those of other studies in Figure S9. Examples of monthly
temperature anomaly fields for the non-infilled HadCRUTS5 dataset, the HadCRUTS5 analysis and
fields of differences between the two are show in Figures S10,S11, S12 and S13. These are
shown to demonstrate the differences in spatial coverage for monthly fields and the effects of
the analysis methods for grid cells that are populated in the non-infilled dataset.
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Text S1 Error model structure for HadCRUT5

This section outlines the terms of the uncertainty model for the HadCRUTS5 non-infilled data
set and the HadCRUT5 analysis grids and time series.

The error model is split into components according to the way that uncertainty information is
presented in the HadCRUT5 dataset. The sources of uncertainty that are modelled in
HadCRUTS5 are grouped according to their error correlation structure to allow uncertainties to
be propagated appropriately into derived diagnostics such as regional average time series. A
summary of the sources of uncertainty within each component of the error models of both the
HadCRUT5 non-infilled dataset and the HadCRUTS5 analysis are presented in Table S1.

Error model for the HadCRUT5 non-infilled dataset

The error model for the non-infilled dataset describes the estimate of temperature anomaly

T (s, t), at spatial location s and time t, as a sum of the true temperature anomaly T (s, t) and
three error terms: a bias term ¢, (s, t) representing biases with large-scale spatial and temporal
structure; a partially correlated error term g, (s, t) for errors with typically local structure; and
an uncorrelated error term ¢, (s, t) describing errors that are independent between spatial
and temporal locations. The full error model for non-infilled fields is given by:

T(s,t) =T(s,t) + &,(s, 1) + &,(s, ) + &,(s, 1) 1M

The bias term ¢, (s, t) models systematic biases from land station homogenization error,
urbanization and non- standard measurement enclosures (Morice et al., 2012) and
adjustments applied to correct for changes in marine measurement methods (Kennedy et al.,
2019). The partially correlated error term ¢, (s, t) models the effects of biases in observations
from individual marine observing platforms. The uncorrelated error term &, (s, t) models the
effects of random measurement errors and sampling errors from estimating grid cell average
temperature anomalies from a finite number of observations.

The HadCRUT5 non-infilled ensemble samples the uncertainties for the combination

T(s,t) + €,(s, t). The uncertainties for partially correlated and uncorrelated errors are not
encoded into the ensemble. Uncertainty information for partially correlated errors £, (s, t) are
provided as spatial error covariance matrices while uncertainties for uncorrelated errors

£, (s, t) are provided for each observed grid cell in the non-infilled dataset.

The error model for estimates of spatial average time series T'(t), derived from the gridded
data, is given as a sum of the true temperature anomaly time series T(t) and four error terms:

T®) =T@) + &,(0) + &, (1) + £,(t) + &.(t) @)

Here g, (t) is the effect of the bias term propagated into the spatial average, &, (t) is the effect
of the partially correlated term, g, (t) the effect of the uncorrelated error term, and the fourth
error term &.(t) is the error in estimating the spatial average from incomplete spatial
coverage, with missing grid cells resulting from limited spatial sampling of the observation
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network. Methods for propagation of uncertainty associated with each of these terms are
given in Text S3.

Error model for the HadCRUT5 analysis

The error model for the HadCRUTS5 analysis describes the analysis estimate T'(s, t) of the
temperature anomaly, at spatial location s and time t, as the sum of the true temperature
T(s,t) and the analysis error g, (s, t):

T(s,t) =T(s,t) + g4(s,t) (3)

The analysis error term combines all errors that are modelled in the Gaussian process analysis,
both spatial reconstruction errors and observational errors. This includes the propagation of
the partially correlated and the uncorrelated observational error terms through the analysis
equations and the effects of the observational bias term, through application of the analysis
method to each HadCRUT5 non-infilled ensemble member, as described in Appendix A. The
analysis ensemble samples the analysis uncertainty such that each ensemble memberis a
sample of T (s, t) + &,(s, t).

Time series of global and regional average temperatures include an additional coverage error
term, £.(t). Like the coverage error term for the non-infilled dataset, this coverage error term
arises from estimation of averages from spatially incomplete grids of temperature anomaly
data.

T() =T(t) + g,(t) + £.(t) 4)

The ensemble time series for the HadCRUT5 analysis sample the uncertainty associated with
T(t) + &,(t). Uncertainty associated with coverage error €.(t) is derived as an additional
uncertainty term that accompanies the ensemble time series. The calculation of analysis time
series, uncertainties and the derivation of summary statistics is described in Text S4.
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Text S2 Merging land and ocean data products

The following subsections describe the calculation of merged temperature anomaly fields
from the land air temperature and sea surface temperature ensemble data sets and, for the
non-infilled dataset, the corresponding propagation of uncertainty for the uncorrelated and
partially correlated components. The computation of terms of the uncertainty model for the
land air temperature data are described in Morice et al. (2012) and those of the sea surface
temperature data are described in Kennedy et al (2019). The merging method follows that of
Morice et al. (2012). Methods for deriving weights for land and sea data are described in
Section 3 of the main article, including modifications to the weighting method for the
HadCRUTS5 analysis to weight towards use of the land air temperature analysis in sea-ice
regions.

Ensemble temperature anomaly fields

The merged global fields are computed as a weighted average of land air temperature and
sea-surface temperature anomalies. For data at spatial locations s and time t, we define the
land air temperature anomaly as T, (s, t) and the marine temperature anomaly as Ty, (s, t). We
define the weighting given to land data as f (s, t) and the weighting given to the marine data
as 1 — f(s, t). The temperature anomaly for the merged field is then calculated as:

T(s,t) = f(s, 0T, (s,8) + (1 = f(5,6)) T (s, ) (5)

The values of the weights are dependent on the fraction of land in a grid cell and data
availability. Where there is no land data available f(s,t) = 0.0 and where there is no marine
data f (s, t) = 1.0. For the HadCRUTS5 analysis the weighting is also dependent on sea ice
coverage, with sea ice regions treated as land. This results in the air temperature analysis
being prioritized in sea ice regions, rather than the sea-surface temperature analysis. As in
Morice et al. (2012), grid cells that contain reporting land stations receive a minimum
weighting of f(s,t) = 0.25 to ensure that island and coastal station data receive a non-
negligible weighting. Further details are provided in Section 3 of the main article.

When the weighting is applied to ensemble members, either those of the HadCRUT5 non-
infilled dataset or the HadCRUTS5 analysis, we define T; ;(s, t) as the dth ensemble member in
the land air temperature ensemble and Ty, (s, t) as the dth member of the sea-surface
temperature ensemble. The merged temperature anomaly fields for ensemble member d,
denoted as T; (s, t), are then computed through the following weighted average:

Td(s, t) = f(S, t)TLd(S' t) + (1 - f(S, t))TMd(S' t) (6)

For the non-infilled dataset, T; (s, t) is a sample of the uncertainty associated with T (s, t) +

£, (s,t), where T (s, t) is the true temperature anomaly and &, (s, t) is the error associated with
systematic biases. It samples the uncertainty in temperature anomaly fields associated with
systematic measurement biases.

The same merging method is used to merge land and ocean ensemble analysis fields. In the
case of the analysis fields, T; (s, t) samples the uncertainty in T (s, t) + €,(s, t), where €,(s, t)
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is the error associated with the spatial analysis. Hence, for the HadCRUTS5 analysis, the merged
ensemble encapsulates the full uncertainty model for the analysis fields.

Uncorrelated component

Both the land air temperature uncertainty model defined in Morice et al. (2012) and the sea-
surface temperature uncertainty model in Kennedy et al. (2019) include uncertainty fields that
describe measurement errors and grid cell sampling errors that are fully uncorrelated between
grid cells. The standard uncertainty, g,,(s, t), in the merged analysis that arises from these
uncorrelated errors, €, (s, t), is computed by propagating the standard uncertainty for land air
temperature, g, (s, t), and that for sea-surface temperature, g\, (s, t), as follows:

0,(s,t) = J F(s,020,(5, 02 + (1 = £(5,8)) a3 (s, )2 (7)

The merged uncorrelated uncertainty fields are only relevant to the non-infilled dataset
(whereas the effects of these error sources are represented within the analysis ensemble for
the HadCRUTS5 analysis).

Partially correlated component

The partially correlated component describes the errors ¢, (s, t) that exhibit correlations
between spatial locations. This information is provided through provision of monthly error
covariance matrices for the non-infilled dataset. There is no equivalent uncertainty
component for the HadCRUTS5 analysis because the effects of these partially correlated errors
are represented in the analysis ensemble (see Text S1).

The partially correlated error term arises from marine observing platform ‘micro biases’ that
impart correlated error structures between spatial locations as observing platforms move. As
there is no error covariance term for the land dataset, the error covariance C for the non-
infilled merged dataset is defined only as a function of the weights and the HadSST4 marine
error covariance matrices C,.

C=U-F)y(I—-F) (8)

where I is an identity matrix and F is a matrix with the land weights on the leading diagonal
and zeros elsewhere:

f(51: t) 0
F = .

0 flswD
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Text S3 Time series calculation - HadCRUTS5 non-infilled dataset

Time series calculation for the non-infilled HadCRUTS5 dataset follows the method described in
Morice et al. (2012) with only minor modifications that are outlined in this section. The
following subsections describe the application of spatial and temporal averaging to each
component of the HadCRUT5 uncertainty model. All reported time average diagnostics are
computed by first computing any spatial averaging required to produce monthly time series
and then computing temporal averages. This order of operation is adopted to equally weight
the contribution of each month in time averaged diagnostics.

Global and regional time series

Here we present the methodology for computing regional and temporal average temperature
anomaly series from the non-infilled HadCRUTS5 dataset. For each component of the
HadCRUT5 uncertainty model, the following text describes uncertainty propagation under the
described spatial and temporal averaging operations.

Spatial average time series

A spatial average temperature anomaly at time t is computed as the grid cell area weighted
average of i = 1, ..., N non-missing grid cells at spatial locations s;. Denoting the grid cell
temperature anomalies as T (s;, t) and the normalized grid cell weights as w(s;, t), the
regional average anomaly is defined as:

N
T(t) = Z w(s;, )T (55, ) (10)
i=1

Each grid cell weight w(s;, t) is computed as the area of the respective grid cell normalized by
the sum of the grid cell areas for non-missing grid cells in the region.

For global averages we adopt the equal hemispheric weighting method of Morice et al. (2012),
with hemispheric weights by = bg = 0.5 applied to Northern Hemisphere and Southern
Hemisphere averages, Ty (t) and Ts(t).

T(t) = byTy(t) + bsTs(t) (11)

Annual average time series

Annual average time series are computed by first applying spatial averaging to obtain
monthly time series and then averaging the monthly series to obtain annual series. After the
application of spatial averaging, we denote the values of the monthly temperature anomaly
time series as T(tjm), where subscripts index the year j and month m. The annual average
T(tj) for year j is computed from the m = 1, ..., M; monthly time series values for year j,
noting that M; = 12 for a complete year of data:
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M;
1
T(5) = 37 ), Ttm) (12
m=1

Uncorrelated component
Uncertainty in spatial average time series

The uncorrelated component of the non-infilled dataset describes measurement error and
grid cell sampling error that are fully uncorrelated between grid cells and between months.
When propagated into an area average the resulting uncertainty in that spatial average is
given by:

N
oy (t) = ZW(Si. )20, (s, t)? (13)
i=1

where g,,(s;, t) is the 1-sigma measurement and sampling uncertainty for grid cell i and a,,(t)
is the uncertainty propagated into the spatial average.

When computing global average time series as an average of hemispheric series, denoting the
value of the northern and southern hemispheric series for the uncorrelated component as

oy () and ag,, (t), the resulting uncertainty in the global average series, a,,(t), is calculated as
follows:

ou(t) = Jbﬁom(t)z + b2osy (£)? (14)

for hemispheric weights by = bg = 0.5.

Uncertainty in annual average time series

The contribution to total uncertainty in annual average time series from the uncorrelated
uncertainty term is derived from monthly series of the uncorrelated component. The resulting
propagated uncertainty for year j, denoted as g, (tj), is calculated as follows fromm =

1, ..., M; monthly values, each denoted as 62 (tj, ):

1\ &
Uu(tj) = <ﬁ]> Z Uf(tjm) (15)
m=1



323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362

363

Partially correlated errors represented by spatial error covariance matrices

The error covariance matrices for the non-infilled HadCRUT5 data set represent the
uncertainty in the non-infilled grids that arises from persistent biases that are associated with
individual marine observing platforms (e.g. an individual ship). These error covariance
matrices are derived from the HadSST4 error covariance matrices, which are reweighted to
account for the land-sea weighting in HadCRUTS5 (as described in Text S2).

Uncertainty in spatial average time series

If w is a vector of normalized grid cell weights w = [w(sy,t), .., w(sy,t)]” and C is the
spatial error covariance matrix for the HadCRUT5 non-infilled data set, the uncertainty in a
spatial average resulting from this uncertainty term, denoted o, (t), is given by:

o, () = VWl Cw (16)

For this partially correlated error term, the uncertainty in the global average requires
computation of hemispheric variances and cross covariances before applying hemispheric
weighting. The error covariance matrices for populated northern and southern hemisphere
grid cells are notated as Cyy and Cgs and the cross covariances between grid cells of each
hemisphere as Cyg and Cgy. Hemispheric variances and cross covariances between
hemispheres are calculated through multiplication by the normalized grid cell weight vectors
for grid cells in each hemisphere, denoted wy and ws. The hemispheres are then weighted
equally by applying the hemispheric weight vector b = [by  bs]” =[0.5 0.5]7.The
contribution to total uncertainty from the partially correlated term is then:

0.5

o, (t) = b7 WECNNWN W%CNSWS b 17)

p = T T
WsCsywy  WsCssWs

Uncertainty in annual average time series

For HadCRUTS5, the propagation of uncertainty reported in error covariance matrices, resulting
from marine platform micro biases, is simplified from the approach reported in Morice et al.
(2012), following changes in time series calculation in Kennedy et al. (2019). In this simplified
error model, a conservative estimate of uncertainty is made by treating this source of error as
fully correlated throughout a year and independent between years.

For the partially correlated component, the uncertainty g, (tj) in an annual average for year j
is calculated from monthly uncertainty series values o, (tjm), forthem =1, ..., M; monthly
series values in year j, as follows:

Mj
1
Up(tj) = ﬁj Z Up(tjm) (18)
m=1
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Coverage uncertainty

The coverage uncertainty calculations presented here follow the method described in Morice
et al. (2012). This uncertainty term represents uncertainty arising from regions that do not
contain data in the HadCRUT5 temperature anomaly fields. The coverage uncertainty
estimates are computed with use of a globally complete reanalysis dataset. For HadCRUT5
coverage uncertainty estimates the reanalysis dataset used is ERA5.

We create an ensemble of p = 1, ..., P reference datasets from P complete years of
temperature anomaly fields in the reanalysis dataset. Each reference ensemble member is
constructed by repeating the temperature anomalies for year p in the globally complete
reference dataset to cover the time period of HadCRUT5. We denote the temperature
anomalies for the reference constructed from year p of the globally complete reference
dataset as R, (s, t). We then mask the globally complete fields R, (s, t) to the coverage of

HadCRUTS5 at time t and denote the values of the masked fields as ﬁp (s, t).

The ensemble of P spatial fields at time t provides P samples of temperature anomaly
variability, with each sample derived from a different year of reanalysis data with appropriate
variability for each calendar month, as represented in the reanalysis dataset, that can be used
to assess the error in monthly or annual time series for a given grid coverage. Errors in
temperature anomaly time series are computed by calculating time series for the globally
complete and the masked reference fields. Denoting the time series value at time t for the pth
globally complete reference data set as R, (t) and that derived from the coverage reduced

field as ﬁp (t), the error associated with the omitted grid cells is calculated as:

ep(t) = Rp(t) — Ry(t) (19)

The coverage uncertainty is then computed as the root mean square of the P error samples.
This approach differs from Morice et al. (2012), which used the standard deviation rather than
root mean square of the error samples, and results in larger uncertainty estimates. Using the
root mean square metric, the estimate of coverage uncertainty, o.(t), is calculated as:

Oc ) =

|~

P
> (Ro®) = By() (20)
p=1

Ensemble statistics (mean and spread)

For the non-infilled HadCRUT5 dataset, as in Morice et al. (2012), the ensemble spread
represents the uncertainty arising from systematic measurement biases. Here we describe the
calculation of summary statistics from the ensemble. For D = 200 ensemble members,
diagnostics (e.g. a regional average monthly or annual series) are computed for the d =

1, ..., D ensemble members. Summary statistics are then computed from the D ensemble
member diagnostics.

10
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Ensemble statistics for spatial fields

When deriving ensemble statistics for spatial fields, summary statistics are computed directly
from the ensemble grids. Values of the ensemble mean, p, (s, t), at spatial location s and time
t, are computed from the corresponding ensemble member temperature anomalies, T; (s, t),
as follows:

D
1
te(s, ) =5;Td(s, £) (21)

Similarly, uncertainty ranges for individual grid cells, g, (s, t), are derived from the ensemble
fields as:

D
0u(5,8) = [57= ) (Tals,D) — el )’ 22)
d=1

Ensemble statistics for time series

For global and regional average time series diagnostics, we first compute time series for each
ensemble member and then compute summary statistics. Denoting the value of a diagnostic
time series for an individual ensemble member at time t as T;(t), the ensemble mean, p, (t),
is defined as:

Ue (t) =

|~

D
Z T, () (23)
d=1

The uncertainty derived from the ensemble, g, (t), is computed as the ensemble standard
deviation as:

D
1
0 () = |5 ) (Ta(® = ()’ 4)
d=1

Best estimate time series and total uncertainty: HadCRUT5 non-infilled dataset

We define the ‘best estimate’ time series for the non-infilled HadCRUTS5 dataset as the
ensemble mean of the D = 200 ensemble member time series, with equal weighting given to
each ensemble member. The values of this time series 1 (t) are therefore equal to the
ensemble mean values p, (t) and are computed as:

11
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D
1
B(O) = (D) = Ta(®) (25)
d=1

The full uncertainty model for the non-infilled HadCRUT5 dataset comprises four distinct
components: observational bias uncertainty represented in the ensembile, g, (t), uncertainty
from uncorrelated measurement and sampling errors, g, (t), uncertainties arising from
individual marine observing platform biases, g, (t), and uncertainty arising from incomplete
observational sampling of the globe, g,.(t).

These terms are combined in quadrature to obtain o (t), the total uncertainty in time series for
the non-infilled dataset:

o(t) = Jae(t)z + 0,(D)2 + 0, ()2 + 0, (1)? (26)

12
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Text S4 Time series calculation - HadCRUTS5 analysis

The HadCRUTS5 analysis methods encode uncertainties represented in the non-infilled
ensemble members, the uncorrelated measurement and sampling error component, and the
partially correlated component into the analysis ensemble fields. This results in fewer terms in
the error model for the HadCRUTS5 analysis than for the non-infilled dataset (see Text S1 for
details) because the effects of these terms are represented the analysis ensemble. The
resulting uncertainty model for the HadCRUT5 analysis has two terms: the uncertainty that is
encoded into the analysis ensemble and the remaining uncertainty from incomplete coverage
of the analysis fields.

Best estimate time series and total uncertainty: HadCRUTS5 analysis
The best estimate of a regional or global average statistic is computed as the ensemble mean
or time series derived from each ensemble member. These ensemble member time series are

computed using the methods for spatial and temporal averaging described in Text S3. The
‘best estimate’ time series is then computed as the ensemble mean time series as:

D
Z T, () 27)
d=1

This is the same as for the non-infilled dataset, but now the terms refer to the diagnostic
(regional or global average) computed from the HadCRUTS5 analysis ensemble.

u(t) = pe(t) =

[l

The total uncertainty is defined by the combination of the uncertainty represented in the
analysis ensemble, g, (t), and the coverage uncertainty associated with regions omitted from
the masked HadCRUTS5 analysis, o.(t). The ensemble uncertainty is calculated following the
methods described in Text S3, noting that these values are now computed for the analysis
temperature anomaly ensemble fields. The coverage uncertainty calculations follow those
described in Text S3, with reference reanalysis fields masked to the HadCRUT5 analysis
coverage. Hence, the coverage uncertainty represents the uncertainty arising from missing
data regions in the analysis, where the analysis is masked because of a weak local
observational constraint.

The uncertainty in the ‘best estimate’ temperature anomaly time series, o (t), is then
computed by combining the two uncertainty components: the ensemble uncertainty, o, (t),
and coverage uncertainty, o.(t), in quadrature:

o(t) =0, (t)? + o,(t)? (28)

13
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Text S5 HadCRUTS5 analysis hyperparameter estimation

Here we provide additional information of the land air temperature and sea-surface
temperature analysis hyperparameter estimates. Analysis hyperparameters are fit using the
maximum marginal likelihood method that is described in Appendix A of the main
manuscript.

We use a Matérn covariance function, for which the covariance k(s,,, s,) is computed as a
function of distance d(s,,, s,,) between locations s,,, and s,,. Here we measure this distance as
the Euclidian or chordal distance between the two locations on the surface of a spherical
Earth. The Matérn covariance function is parameterized as a function of a range
hyperparameter r, scale hyperparameter ¢ and smoothing hyperparameter v, and is defined
as:

v

1-v
k(sm: Sn) =g? 2_ @ d(smr Sn) K, @ d(sm; Sn) (29)
rM\ r T

where I is the gamma function and K, is the modified Bessel function of the second kind of
order v. We use a fixed Matérn smoothing parameter of v = 1.5 and optimize the scale and
range parameters (o, 7).

We computed the marginal maximum likelihood optimization for each monthly field of land
air temperature anomalies and sea-surface temperature anomalies as described in Appendix
A. Our land and marine hyperparameter estimates are computed as an average of the monthly
optimized values for the 360 monthly fields in the 1961 to 1990 climatology period. Finally, we
rounded the scale parameter estimates to the nearest 0.05 “C and range parameters estimates
to the nearest 50 km. We have chosen to use parameter estimates based on 1961-1990 data
for the following reasons: (i) this is a period of good global observational coverage for land
and ocean; (ii) observing methods in the early record are less well understood (e.g. see Osborn
et al 2020 and Kennedy et al 2019); and (iii) parameter estimates in the climatology period are
less likely to be effected by differences in regional trends.

Monthly values of optimized hyperparameters are shown in Figures S1 and S2, along with the
average parameters in the 1961-1990 period. We note that there is non-stationarity in the
hyperparameter fits over time for marine parameter estimates. It is not clear whether this is a
real feature of the temperature field or a result of e.g. differences in variability as fully
unsampled regions become sampled or due to changes in observation methods that are not
described by our uncertainty model. We also note that marine correlation structure shows
significant spatial anisotropy, as demonstrated in Kennedy et al. (2019), with regional variation
and much longer correlation ranges in zonal directions than meridional, which may also have
an impact when combined with changes in spatial sampling over time.
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Text S6 Masking of the HadCRUTS5 analysis fields by observational constraint

The HadCRUTS5 analysis fields are generally not globally complete because regions with weak
observational constraint are masked from the analysis fields. The masking is controlled by a
parameter a which sets a threshold for the ratio of the spatial Gaussian process’ posterior
distribution variance to its prior distribution variance (see Appendix A.4 of the main article).
The HadCRUTS5 analysis uses a value of this threshold of @ = 0.25, which corresponds to
masking the analysis in regions where there is a reduction in variance from prior to posterior
of less than 25%.

Figures S3 to S5 show global and hemispheric annual time series and uncertainties for varying
values of analysis masking parameter ranging from a = 0.0 (no masking) to @ = 0.5. Figure S6
shows the corresponding global and hemispheric coverage for the masked grids contributing
to the annual averages. At values of « = 0.5 and above, the analysis is masked at grid cells that
are actually observed in the non-infilled dataset. At these large values of @, these observed
grid cells are masked because observational uncertainty is sufficiently great that the
observations do not provide enough information to achieve the required analysis constraint.
Hence, we do not consider values of « larger than a = 0.5.

There is little sensitivity of global and hemispheric diagnostics to variation in the range

0.1 < @ < 0.5.When a = 0.0 the coverage is global, however, this unmasked analysis may not
faithfully represent regional trends for the unconstrained regions. Uncertainties in global and
regional time series are also insensitive to variations in « in the range 0.1 < a < 0.5. However,
for @ = 0.0, the uncertainty is notably larger due to the sampling strategy for the analysis
ensemble (described in Appendix A) where the analysis errors are modelled treating
persistence in temperature anomalies as being fully correlated in time during a year. This
results in conservative estimates of uncertainty for annual averages in regions where the
analysis uncertainty is large (i.e. regions with a weak observational constraint).

Figure S7 shows the ensemble spread for the unmasked analysis over various time periods
while the ensemble spread for the masked analysis is shown in Figure S8. The metric of
ensemble spread used here is computed by combining the following two quantities in
quadrature: (1) the standard deviation across the time period of the grid cell ensemble means
and (2) the mean across the time period of the monthly ensemble standard deviations for
each grid cell.

The unmasked land and ocean analyses each tend toward a uniform ensemble spread in
regions of weak observational constraint (Figure S7). This happens because the Gaussian
process priors, fit separately for land and ocean, model typical variability in each domain. This
effect is mitigated by masking regions of weak observational constraint (Figure S8), and the
uncertainty in spatial average time series that results from the masking is represented by the
coverage uncertainty estimates. It should be noted, however, that the analysis is able to
represent variations in regional variability for regions where the analysis is constrained by local
observations.
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Figure S1. Estimates of land surface air temperature (LSAT) analysis scale (left) and range
(right) hyperparameters. Monthly estimates by maximum marginal log likelihood optimization
are shown in blue. The average of the monthly estimates over the 1961-1990 climatology
period are shown in orange.
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Figure S2. Estimates of sea-surface temperature (SST) analysis scale (left) and range (right)
hyperparameters. Monthly estimates by maximum marginal log likelihood optimization are
shown in blue. The average of the monthly estimates over the 1961-1990 climatology period
are shown in orange.
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Figure S3. Comparison of annual global mean surface temperature diagnostics for varying
levels of masking of the analysis, controlled by the observation constraint threshold a. Higher
values of alpha indicate more masking. Also shown is the time series for the non-infilled
HadCRUTS5 dataset (blue). (Top) annual global average temperature anomaly series (°C).
(Middle) difference in global average series from the fully unmasked analysis (¢ = 0.0,
orange). (Bottom) estimated uncertainty ranges (1 &) in annual average global mean surface
temperature for varying values of observation constraint threshold.
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Figure S5. As Figure S3 for the Southern Hemisphere.
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608  Figure S6. Percentage area of the globe represented by the analysis for varying values of the
609  masking parameter a.
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Figure S7. Ensemble spread (1 o) for the global analysis without masking regions with weak
observational constraint (& = 0. 0). The ensemble spread for each grid cell is computed here
as the time average of the monthly ensemble standard deviations summed in quadrature with

the standard deviation of the monthly ensemble means.
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Figure $8. Ensemble spread (1 o) for the masked HadCRUTS5 analysis, with observation
constraint (& = 0. 25). Grid cells are plotted where at least 50% of grid cells are populated
during each time period. The ensemble spread is computed as in Figure S7.
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Figure $9. Global average temperature anomaly series (upper panel) and uncertainties (lower
panel, °C) reported for a range of datasets. Series are as provided by producers of each dataset,
with anomalies adjusted to a common reference period of 1961-1990 and uncertainties
expressed as 1.96 sigma or 95% confidence range. For NOAAGlobalTemp, the uncertainty
range is taken from version 4 of the data set as the v5 uncertainties were not available at the
time of writing.
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Figure $10. Monthly temperature anomaly fields (°C relative to 1961 to 1990 average) for
January, April, July and October 1850, showing the non-infilled dataset (left), the HadCRUT5
analysis (middle) and differences between the non-infilled dataset and the analysis (right).
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Figure $11. Monthly temperature anomaly fields (°C relative to 1961 to 1990 average) for
January, April, July and October 1900, showing the non-infilled dataset (left), the HadCRUT5
analysis (middle) and differences between the non-infilled dataset and the analysis (right).
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Figure $12. Monthly temperature anomaly fields (°C relative to 1961 to 1990 average) for
January, April, July and October 1950, showing the non-infilled dataset (left), the HadCRUT5
analysis (middle) and differences between the non-infilled dataset and the analysis (right).
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Figure $13. Monthly temperature anomaly fields (°C relative to 1961 to 1990 average) for
January, April, July and October 2000, showing the non-infilled dataset (left), the HadCRUT5
analysis (middle) and differences between the non-infilled dataset and the analysis (right).
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Ensemble Uncorrelated | Error Coverage
uncertainty | covariance uncertainty
matrix
(per grid- (regional
cell) (inter-grid- average time
cell) series only)
HadCRUT5 | Samples uncertainty from | Per-grid-cell 1- | Between-grid- Uncertainty in
non- systematic biases from sigma cell and within- regional average
infilled land station uncertainty grid-cell partially- | time series
dataset homogenization error, associated with | correlated arising from
urbanization and non- within-grid-cell | uncertainties. incomplete
standard measurement observational Describes the global coverage
enclosures (Morice et al., sampling and effect of of the non-
2012) and adjustments random individual marine | infilled grids.
applied to correct for measurement | measurement
changes in marine error. platform-specific
measurement methods ‘micro biases’
(Kennedy et al., 2019). (Kennedy et al.,
2019) as
platforms move
between grid
cells.
HadCRUT5 | Samples all uncertainties Included in the | Included in the Uncertainty in
analysis modelled for the analysis analysis regional average
HadCRUTS5 analysis ensemble. ensemble. time series
temperature anomaly arising from
fields. incomplete

Includes the effects of
systematic measurement
biases, per-grid-cell
uncorrelated uncertainties,
inter-grid-cell error
covariances associated
with the gridded
observations and the
uncertainty associated
with the statistical analysis
method.

global coverage
from masking
the analysis in
regions of weak
observational
constraint.

Table S1. HadCRUT5 uncertainty model components provided for the non-infilled dataset and
the HadCRUTS5 analysis.
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