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ABSTRACT

A new analysis of historical radiosonde humidity observations is described. An assessment of both known

and unknown instrument and observing practice changes has been conducted to assess their impact on bias

and uncertainty in long-term trends. The processing of the data includes interpolation of data to address

known sampling bias from missing dry day and cold temperature events, a first-guess adjustment for known

radiosonde model changes, and a more sophisticated ensemble of estimates based on 100 neighbor-based

homogenizations. At each stage the impact and uncertainty of the process has been quantified. The adjust-

ments remove an apparent drying over Europe and parts of Asia and introduce greater consistency between

temperature and specific humidity trends from day and night observations. Interannual variability and trends

at the surface are shown to be in good agreement with independent in situ datasets, although some steplike

discrepancies are apparent between the time series of relative humidity at the surface.

Adjusted trends, accounting for documented and undocumented break points and their uncertainty, across

the extratropical Northern Hemisphere lower and midtroposphere show warming of 0.1–0.4 K decade21 and

moistening on the order of 1%–5% decade21 since 1970. There is little or no change in the observed relative

humidity in the same period, consistent with climate model expectation of a positive water vapor feedback in

the extratropics with near-constant relative humidity.

1. Introduction

The importance of water vapor in the study of climate

change cannot be overstated. Water vapor through la-

tent heat exchanges is the principal method of energy

transport through the global atmosphere and it is a

dominant greenhouse gas (e.g., Held and Soden 2000).

Water vapor feedback represents the largest climate

feedback mechanism simulated by general circulation

models (GCMs) responding to a climate forcing such as

increased CO2 (Soden and Held 2006; Randall et al.

2007). However, if, as predicted by GCMs, relative hu-

midity remains approximately constant under a chang-

ing climate, then the water vapor feedback is in part

offset by the temperature lapse-rate feedback, and the

net feedback uncertainty is much smaller than the in-

dividual components (Allan et al. 2002; Colman 2003)

and little affected by model bias (John and Soden 2007).

The radiative impact of water vapor relates to a frac-

tional, not absolute, change in water vapor, resulting

in a disproportionate influence from the upper tropo-

sphere (e.g., Shine and Sinha 1991). These consider-

ations provide a strong requirement for observational

evidence with good vertical resolution for monitoring

maintains the constant relative humidity in a changing

climate.

The observation of water vapor in the atmosphere is

an inherently difficult operation. Absolute concentra-

tions decrease by orders of magnitude as one ascends

from the surface to the stratosphere. This has limited our

ability to detect emerging signals in global atmospheric

water vapor, particularly in the radiatively important

upper troposphere. Satellite observations of the 6.7-mm

water vapor emission band have been used to infer that

trends in upper-tropospheric water vapor are consistent

with warming and constant relative humidity (Soden

et al. 2005). Regional trends in upper-tropospheric hu-

midity may exist (Bates and Jackson 2001) but cannot be

separated from instrumental biases and natural vari-

ability (McCarthy and Toumi 2004). More recently, an

emerging picture of increases in surface and total col-

umn water vapor broadly consistent with constant rel-

ative humidity (Dai 2006; Trenberth et al. 2005) has

been attributed to anthropogenically forced warming of
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the climate system in recent decades (Willett et al. 2007;

Santer et al. 2007).

The global radiosonde network provides a consider-

able resource of humidity observations through much of

the twentieth century. However, the quality of the ob-

servations for climate applications is questionable (e.g.,

Elliott and Gaffen 1991; Elliott 1995; Guichard et al.

2000; Remsberg et al. 2000; Wang et al. 2003). Despite

this, a number of studies have attempted to diagnose

trends in tropospheric humidity from radiosondes for

a number of regions (e.g., Gaffen et al. 1991; Gutzler

1992; Zhai and Eskridge 1997; Ross and Elliott 1996,

2001; Wang et al. 2001; Durre et al. 2009) and have

tended to show increases in specific humidity with re-

gional trends in relative humidity of mixed signs.

In this paper we present a new analysis of tropospheric

humidity from radiosondes [the Hadley Centre gridded

homogenized radiosonde humidity dataset (HadTH)],

to estimate trends and uncertainty in both relative and

specific humidity across the Northern Hemisphere over

the last 30 yr. These data provide vertical resolution not

available in many long-term surface or satellite-based

measurements, and build upon earlier analyses of the

radiosonde data, therefore complementing and building

the existing evidence base. The purpose of HadTH is

specifically to determine whether the radiosondes pro-

vide sufficient evidence to confidently reject the null

hypothesis that relative humidity in the troposphere has

remained at a constant level through recent climate

change. Therefore, due care should be taken if HadTH

is used for other applications because the historical

biases affecting the radiosonde humidity data have not

yet been as rigorously assessed as those for temperature.

2. Strategy

The network of routine radiosonde launching stations

has undoubtedly been a major contribution to our un-

derstanding of the global circulation, hydrological cycle,

and local dynamical processes. However, the network

has not been explicitly designed to cater for the taxing

requirements of climate monitoring, and it is heavily

affected by technological and processing changes that

act to mask any small climate signals that may be present

in the data (e.g., Elliott and Gaffen 1991; Elliott 1995;

Soden and Lanzante 1996; Sapucci et al. 2005). In-

dividual station humidity records will contain changes

in the measured humidity over time that result from

changes in measurement technology (e.g., resistance,

capacitive, or skin hygristors), instrument design (e.g.,

housing of the instruments or inclusion of multiple

sensors), instrument response times, and on-site or other

data processing (e.g., Wade 1994; Elliott et al. 1998).

These considerations are further complicated by changes

to the sampling and sensitivity across a variety of at-

mospheric states [e.g., the accuracy and precision in the

cold, dry upper troposphere has improved considerably

over time (Remsberg et al. 2000)].

The limited availability of metadata to describe many

of these changes makes a physically based approach

for absolute calibration of the myriad radiosonde in-

struments unfeasible. Therefore, we must rely on the

statistically based adjustment of the long-term climate

record. However, humidity biases are a function of the

atmospheric state (e.g., Wade 1994; Elliott and Gaffen

1991), complicating the application of corrections to

daily data using a simple statistical method. The non-

linearity in humidity conversions makes it inappropriate

to undertake bias correction on monthly mean temper-

ature and dewpoints and then convert to relative and

specific humidity (Gaffen et al. 1991), or to estimate

monthly mean corrections for relative and specific hu-

midity from monthly mean corrections applied to tem-

perature and dewpoint. Therefore, we undertake the

humidity conversion before the homogenization, and

then homogenize the temperature, relative humidity,

and specific humidity records independently. Because

we have not forced consistency between the tempera-

ture and humidity variables, any discrepancies in the

large-scale mean trends would indicate a serious failing

of the method. The cost of this method is increased error

and uncertainty in trends and variability at individual

stations.

Homogenization of radiosonde temperature records

for climate has tended to be manually intensive (e.g.,

Lanzante et al. 2003; Thorne et al. 2005a), although

automated methods have more recently been developed

(Haimberger 2007; Sherwood 2007; McCarthy et al.

2008). There are advantages and pitfalls with any method,

and the uncertainty in long-term trends is poorly quan-

tified in most, if not all, such methods (Thorne et al.

2005b). For the homogenization of the humidity data we

use the method of McCarthy et al. (2008), which pro-

vides a reproducible homogenization with uncertainty

resulting from both the detection and adjustment of the

break points. The limitations of the system have been

documented in McCarthy et al. (2008) and Titchner

et al. (2009). The method appears to adequately esti-

mate the random uncertainty in trend estimates result-

ing from the homogenization, but it struggles to fully

account for any systematic bias that might pervade the

network. In this analysis we introduce an additional first-

guess correction based upon available metadata to off-

set this.

McCarthy (2008) shows that the spatial sampling un-

certainty in large-scale mean humidity resulting from
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the sparse radiosonde distribution is likely to be large.

This will be particularly true in the Southern Hemi-

sphere and the tropics. Stations in the 08–708N region

were initially included in the homogenization system,

but because of the large uncertainties in the tropics,

from both the homogenization and limited spatial sam-

pling, the subsequent analysis of the large-scale average

trends has been limited to the 208–708N region.

The rest of this paper describes the impact of each

stage of the data homogenization and resultant dataset.

In section 3 we discuss the generation of monthly mean

humidity data (section 3a), which is in-filled to avoid

missing cold temperature and dry day sampling biases

(section 3b) and then converted to anomalies (section 3c)

for homogenization. The homogenization is then un-

dertaken in two stages: a first guess of known changes

(section 4a), followed by the neighbor-based homoge-

nization (section 4b). Sections 5 and 6 then provide

a discussion and conclusions from the resultant homog-

enized trends.

3. Data processing

We use daily temperature and dewpoint data from the

surface and five fixed pressure levels—850, 700, 500, 400,

and 300 hPa—from the Integrated Global Radiosonde

Archive (IGRA; Durre et al. 2006). Data at 1000 hPa

were included initially but were rejected from the ex-

tensive analysis because of limited availability. The

IGRA quality control does not allow for observations

where multiple, differing sources of the same observations

exist, because there is no a priori way of preferentially

selecting one data source over another (I. Durre 2005,

personal communication). This results in some signifi-

cant gaps in the IGRA humidity record at some stations.

For this analysis data completeness was considered a

high priority; therefore, the dataset was supplemented

with additional data from the earlier Comprehensive

Aerological Reference Dataset (CARDS; Eskridge et al.

1995) at stations where CARDS was found to be sig-

nificantly more complete than IGRA. Metadata from

IGRA (Durre et al. 2006) have been used for the iden-

tification of break points.

a. Calculation of monthly means

Monthly means for temperature, relative humidity,

and specific humidity, at each pressure level, and sepa-

rately for 0000 and 1200 UTC launch times, were cal-

culated for the 34-yr period from December 1969

through to November 2003. The method for converting

data into relative and specific humidity is described in

appendix A. Biweight means (Lanzante 1996) were

used, in order to reduce the influence of outliers, and

monthly means were only calculated where at least

15 days of temperature observations were present within

a month. For humidity some of the ‘‘observations’’ had

to be interpolated to remove sampling biases (see sec-

tion 3b) so constraints on the number of observations

were only applied to the temperature data. Only data

with a launch time within 3 h of either 0000 or 1200 UTC

were retained.

b. Known sampling bias

In this section we address two important sampling

biases in the raw humidity data, from missing dry ob-

servations [section 3b(1)] and missing cold observations

[section 3b(2)]. We then conduct a quantitative assess-

ment of the interpolation method employed [section

3b(3)].

1) MISSING DRY OBSERVATIONS

Between 1973 and 1993, at many stations operated

by the United States and a few other countries, low-

humidity observations were considered unreliable, and

where the relative humidity fell below 20% it was rou-

tinely recorded as 19% relative humidity or reported as

a dewpoint depression of 308C (Wade 1994). This pro-

cedure results in a bias in monthly mean averages during

this period (Elliott et al. 1998), and a spurious trend in

the long-term record because of the termination of this

operating practice in 1993. Ross and Elliott (1996) re-

placed these ‘‘dry’’ observations with a value of 16%

relative humidity, estimated from Canadian stations

that did not undertake this practice. At most stations

there are now several years of low-humidity observa-

tions post-1993. We have estimated replacement values

for individual stations and levels as the median relative

or specific humidity from observations made on or after

1 January 1995, and where the relative humidity is less

than 20%. While this may allow us to recover trends that

result from changes in the frequency of dry events, we

will not recover any trend resulting from changes in the

magnitude of dry events.

2) MISSING COLD OBSERVATIONS

A second sampling issue in the database relates to

humidity observations in cold conditions. It was stan-

dard practice until 1993 for U.S. stations to report hu-

midity measurements as missing when the ambient air

temperature was below 2408C. Most early radiosonde

hygristors are considered unreliable at and below these

temperatures (Remsberg et al. 2000). We account for

this by rejecting all levels for a particular season and

station where the air temperature is below 2408C in

more than 5% of available observations. Despite this,

a warm temperature humidity sampling bias still exists
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in the early part of the IGRA database. This is apparent

by comparing temperature records that are sampled

using all temperature observations with those using only

temperature data where an associated humidity obser-

vation also exists. This suggests that humidity observa-

tions are missing or have been preferentially rejected by

quality control under colder conditions early in the re-

cord, and therefore dry events are missing in the early

part of the record. This is undesirable for a climate re-

cord and results in a spurious drying trend.

Most stations have had near-complete humidity

sampling (relative to temperature) since the mid-1990s.

Therefore, for each station we determined the least

squares linear regression between monthly mean temper-

ature and relative humidity, and between monthly mean

temperature and the natural logarithm of specific humidity

using data from 1995 to 2003. Examples for the 850-hPa

level at Lindenberg, Germany (52.228N, 14.128E), and

Minamitorishima, Japan (24.308N, 153.978E), are shown

in Fig. 1. The regression coefficients vary considerably

from place to place and with pressure level, but in gen-

eral specific humidity is more strongly tied to tem-

perature [regression coefficients of 0.076 log(g kg21)

K21 and 0.063 log(g kg21) K21 for Lindenberg and

Minamitorishima, respectively] than relative humidity,

which is generally very weak or weakly negatively corre-

lated to temperature (regression coefficients of 0.2% K21

and 20.6% K21 for Lindenberg and Minamitorishima,

respectively). In other words, for many locations month-

to-month variations in specific humidity largely, but not

completely, compensate for temperature changes to

maintain the relative humidity (or relative saturation

deficit), consistent with previous studies (e.g., Ross et al.

2002).

The regression coefficients are used to estimate the

mean of the missing humidity observations from the

mean of the associated temperature measurements

that do exist. Where the regressions are not statistically

significant the interpolation is still performed, rather

than developing an alternative method in these in-

stances. We must also assume that the regression co-

efficients for the modern era are representative of the

earlier period. The suitability of this approach has

therefore been quantitatively assessed and summarized

in the next section.

3) ESTIMATE OF SAMPLING BIASES

To investigate the impact and suitability of the data

interpolation and the underlying assumptions, we se-

lected 24 case study stations (see appendix B) from

a cross section of locations. By manual inspection it was

confirmed that these stations were free from the specific

warm temperature or dry condition sampling biases of

the type described above. For each station we conducted

the following tests:

1) Dry days 5 19% RH: Replace all incidences of daily

RH , 20% with RH 5 19% to test the impact of the

low-humidity reporting practice.

2) Dry days 5 16% RH: Replace all incidences of daily

RH , 20% with RH 5 16% to test the impact of the

Ross and Elliott (1996) amendment to the above.

There is no trivial way to interpret either the 19% or

16% RH replacement in terms of specific humidity q,

so experiments 1 and 2 were only applied to relative

humidity.

3) Dry days interpolated: Replace all relative and spe-

cific humidity where RH , 20% with the median

value of relative or specific humidity from all in-

stances of RH , 20% in 1995–2003 data from the

same station [see section 3b(1)]; this tests the ap-

proach adopted in this work to correct for the low-

humidity sampling bias.

4) Cold days missing: Successively remove the coldest

x days of observations before calculating monthly

means, where x ranges from 1 to 25. This tests the

impact of the temperature sampling bias described in

section 3b(2) for varying amounts of missing data.

5) Cold days interpolated: Replace the relative and

specific humidity observations for the coldest x days

with values estimated from the temperature obser-

vations and linear regression coefficients for 1995–

2003 [see section 2b(2)], to test the correction for the

cold sampling bias.

The largest potential sampling bias results from the

missing cold days as shown in Fig. 2. The interpolation of

humidity significantly reduces, but does not completely

remove, this bias. For example, a situation in which 15

humidity observations are available and 15 are missing

the sampling bias can exceed 5% relative humidity and

13% specific humidity at 850 hPa. The interpolation

reduces relative humidity bias to 2% and specific hu-

midity bias to 5% in this test for the 850-hPa level, av-

eraged across all of the test-case stations. At 500 hPa the

cold-day sampling results in a smaller bias in relative

humidity, and the data interpolation has no significant

impact on this bias. This reflects a weak correlation be-

tween temperature and relative humidity at this level in

the test-case stations. However, the specific humidity

bias is larger at 500 hPa and the interpolation removes

virtually all of this bias. The root-mean-square error is

not improved by the interpolation, except for the cases

with a small number of observations (and therefore the

greatest interpolation), but this is less important than

the bias for diagnosing long-term climate change. The

root-mean-square error at 850 hPa is representative of
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FIG. 1. Monthly mean RH and natural log of specific humidity against monthly mean temperature at 850 hPa for

(top) station 10393, Lindenberg, and (bottom) station 47991, Minamitorishima.
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behavior at other pressure levels and so only the example

of 850 hPa is shown in Figs. 2b,e. The method of low-RH

replacement used here is an improvement over the

previously used 16% RH value (Ross and Elliott 1996),

but only for those situations where the relative humidity

is persistently low (i.e., more than 20 days month21 that

are below 20% RH; see Figs. 2a,c).

We used the results from the test-case evaluations to

estimate the potential sampling bias in the humidity

dataset after interpolation of the missing data. We as-

sume a linear relationship between the bias and the

number of interpolated observations in a month. Figures

2a,c,d,f suggest that this is not perfect; in particular, the

cold-day interpolation at 850 hPa (dashed curve in Figs.

2a,c) suggests a peak bias when approximately 50% of

the month is interpolated. However, it should be a rea-

sonable approximation for the purpose of estimating the

potential bias. Cold-day sampling results in potential

bias in relative humidity of 0.08% day21 at both 850 and

500 hPa, 0.2% day21 for specific humidity at 850 hPa,

and 0.015% day21 for specific humidity at 500 hPa. Dry-

day sampling results in estimated potential bias in relative

humidity of 0.02% day21 and 0.03% day21 at 850 and

500 hPa, respectively, 0.18% day21 for specific humidity

at 850 hPa, and 0.13% day21 for specific humidity at

500 hPa.

FIG. 2. (a) Absolute bias and (b) root-mean-square error in estimates of monthly mean RH at 850 hPa for varying number of available

days of observation. (c) As in (a), but for 500 hPa. (d)–(f) As in (a)–(c), but for specific humidity. The x axis is the number of actual

observations available for the monthly mean calculation, and all of the other days for the month are either missing or have been in-

terpolated. Missing days are the coldest x days in the month (solid) and the humidity data for the coldest x days have been interpolated

from the temperature data (dashed). All RH , 20% have been replaced with the median of RH , 20% for data between 1995 and 2003

(dotted). All RH , 20% have been replaced with RH 5 19% (triangles) and all RH , 20% have been replaced with RH 5 16% (crosses).
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For each of the stations in the complete dataset we

determined the time series of potential systematic bias

resulting from the actual number of interpolated days

in each month resulting from both the cold-day and dry

sampling biases described. The resulting trend in the

time series of this estimated bias is shown for both

relative and specific humidity at 500 hPa in Figs. 3b,d

on a 58 latitude 3 108 longitude grid. Figure 3 also

shows the trend difference between the interpolated and

noninterpolated datasets (Figs. 3a,c). The potential

trend bias estimated in this way is significantly smaller

than the difference between the interpolated and non-

interpolated datasets, providing evidence that the ap-

plication of the data interpolation described above is

appropriate for reducing trend bias. However, we must

accept that systematic trend biases of the order of

1% decade21 may still occur at specific locations across

North and Central America and the Pacific (Fig. 3d). It

should also be noted that the sign of this bias may not be

consistent everywhere because stations have come from

different source datasets, with some CARDS records

archiving dry days as 19% RH, yielding a positive bias in

monthly means, and with IGRA records archiving dry

days as a dewpoint depression of 308C, yielding a nega-

tive bias.

c. Calculation of climatology, anomalies, and gridded
means

Monthly climatologies were determined for the pe-

riod December 1980 through to November 2000. Cli-

matologies were calculated separately for day and night,

and for each month, variable, and pressure level. Cli-

matologies were calculated where at least 2 months of

data were available in at least three seasons of the year

in at least 7 yr of each decade of the climatology period.

This nominally limits HadTH to a top level of 300 hPa at

tropical latitudes, and 500 hPa at high latitudes. Where

climatologies exist the monthly mean data were con-

verted to anomalies with respect to 1981–2000 and set to

missing elsewhere. Gridded fields, where they are pre-

sented, have been calculated as a simple average of all

radiosonde stations falling within a 58 latitude 3 108

longitude grid box, as in Thorne et al. (2005a).

4. Homogenization

a. First guess of known radiosonde changes

Technological advancements in humidity hygristors

have resulted in large step changes in the radiosonde

humidity record at many stations. Improved sensitivity

FIG. 3. The difference in linear trends between the data both (a) with and (c) without interpolation of missing

humidity observations. (b),(d) The estimated trend uncertainty resulting from the interpolation process based on the

amount of data that have been interpolated: (a),(b) RH and (c),(d) specific humidity.
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to dry conditions and improvements to instrument re-

sponse times result in negative humidity trends in the

raw radiosonde archive at many stations across Europe,

Russia, and Japan. An example for Lindenberg is shown

in Fig. 4. A large step change in relative humidity is

apparent in 1989, associated with a change from MARS

(Russian sonde) to Vaisala radiosondes, which corre-

sponds to a switch from a goldbeater’s skin to a capaci-

tive hygristor. This particular change occurred at many

stations across the former East Germany, and there are

other examples of similar large step changes in humidity.

Because of the known limitations of the automated

homogenization method of McCarthy et al. (2008), the

first step of the homogenization was to provide objec-

tive first-guess adjustments for the most common radio-

sonde instrument changes, many of which result in large

changes in the recorded mean humidity (e.g., Fig. 4).

From the available metadata record we identified all spe-

cific radiosonde instrument changes (e.g., from MARS

to Vaisala RS80) that were recorded at four or more

radiosonde stations. For each such event we then cal-

culated the difference in the median temperature and

relative and specific humidity, for the 2-yr period before

and after the recorded event. In previous studies (e.g.,

Thorne et al. 2005a; McCarthy et al. 2008), much longer

periods have been used for the estimation of breaks. In

this case a shorter window is used because we are using

the station time series in isolation, and therefore a long

window would act to remove the trend we are at-

tempting to detect. For example, in the presence of

a linear specific humidity trend of 2% decade21 (or

0.016 g kg21 decade21 at 500 hPa), every such break

correction calculated from the station series has the

potential to reduce the trend by 0.2% decade21 using

a 2-yr window, or 0.5% decade21 using a 5-yr window, if

the break is near the central point of the time series. The

cost of reducing the averaging window is to increase the

uncertainty from the natural variability in the time se-

ries. Tests on random samples from the case study sta-

tions (appendix B) at 500 hPa gave a standard deviation

of the difference in medians for 2-yr windows of the order

of 0.08 g kg21, and from a 5-yr window 0.04 g kg21. This

component of uncertaintywill be reducedby averaging over

multiple stations. Two-year windows result in a standard

deviation in median differences of 0.5 K for temperature at

500 hPa, on a 0.2 K decade21 trend. This is the same as the

adjustment uncertainty of 0.5 K estimated more compre-

hensively by McCarthy et al. (2008) for the neighbor-based

FIG. 4. Time series of monthly mean relative humidity at 500 hPa for Lindenberg for (a) day and (c) night

soundings. (b),(d) Frequency distributions of point measurements of relative humidity at 500 hPa for the periods of

1970–91 (dotted) and 1992–2003 (solid). Triangles denote the location of recorded metadata events. 1971, 1986, and

1991 are all radiosonde instrument changes; 1975 is a recorded station identification change.
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homogenization system. In other words, the random error

of this first-guess adjustment is of a similar magnitude to

that from the neighbor-based homogenization, but each

adjustment introduces a systematic error by acting to re-

duce trend present in the time series. It is this systematic

error we wish to avoid, so the first-guess adjustment is

limited to known radiosonde model changes only.

The first-guess adjustment for the MARS to Vaisala

RS80 instrument change is shown in Fig. 5. At 700 hPa

and above the estimated relative humidity correction

is close to 10%, and all 14 contributing stations have

a change of greater than 5% (i.e., MARS recorded

between 5% and 15% higher relative humidity than

Vaisala RS80). A full list of first-guess break points

is provided in appendix C (Table C1). These are not

expected to represent a comprehensive assessment of

radiosonde bias related to these particular radiosonde

model changes; rather, they are a first-guess estimate

of the changepoints that are then modified by the

subsequent, more rigorous, neighbor-based homoge-

nization. The values presented (in Table C1) are av-

erages across all of the radiosonde pressure levels and

are provided to illustrate the order of magnitude of the

estimated step changes associated with the metadata

events. The first-guess adjustments are calculated and

applied separately for each pressure level.

b. Homogenization

The method of McCarthy et al. (2008) is employed to

d detect and adjust for both known and unknown break

points,
d refine the first-guess break points from section 4a us-

ing a neighbor-based method, and
d quantify the trend uncertainty resulting from the ho-

mogenization method.

This is an automated, iterative, neighbor-based ho-

mogenization scheme. Break-point identification applies

a Kolomogorov–Smirnov test to time series of differ-

ences between individual station series and a weighted

composite of near neighbors. The contributing neigh-

bors are taken from those locations in the National

Centers for Environmental Prediction–National Center

for Atmospheric Research (NCEP–NCAR) reanalysis

where the correlation with the target stations time series

of seasonal means is greater than 1/e. An example for

Valentia, Ireland, at 850 hPa is shown in Fig. 6. The

extent of the humidity neighbor region is smaller than

that for temperature because of the more heterogeneous

distribution of water vapor within the troposphere. How-

ever, over Europe the correlation scale for both relative

humidity and specific humidity is large enough to allow

FIG. 5. Profile of the first guess of a break resulting from a switch from MARS to Vaisala

RS80. The median of 14 individual station estimates (solid line), the interquartile range (dark

shading), and the full spread of 14 station estimates (light shading) are denoted.

5828 J O U R N A L O F C L I M A T E VOLUME 22



for over 40 contributing neighbor stations at 850 hPa for

this station on the western edge of Europe. The system

uses the actual radiosonde station data to derive the

neighbor reference selection, and the NCEP–NCAR re-

analysis plays no further role in the homogenization. At

least three neighbors are required for the homogenization.

The homogenization system is fully automated, with

a set of 14 tunable parameters that control the subjec-

tive decision processes relating to the identification and

adjustment of break points at individual levels. The

homogenization has been run 100 times with a range of

parameter settings, and the details of these are discussed

FIG. 6. Fields of 850-hPa correlation coefficients from NCEP–NCAR reanalysis of seasonal

mean time series against the grid box containing the location of the radiosonde station at

Valentia (green square). The location of radiosonde stations that have been included in HadTH

are marked (triangles). All stations that fall within the contiguous area of correlation greater

than 1/e are used as neighbor stations for Valentia.
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in McCarthy et al. (2008). The homogenization was

conducted independently on temperature, relative hu-

midity, and specific humidity, for both day and night.

The 100 homogenizations provide a first-order estimate

of the uncertainty that results from the homogenization

because each run will identify a different set of possible

break points and their adjustments. We have shown

previously (McCarthy et al. 2008) that this method

provides a reasonable estimate of the random un-

certainty in large-scale trend estimates.

We also wish to construct the most representative

homogenization from this ensemble to create a single

coherent dataset, which will be referred to as the ‘‘best

guess’’ version. To do that we identify break points that

consistently appear in at least 50 of the 100 homoge-

nization members [see also Guo et al. (2008), who used

a slightly more liberal 25-member criteria in an anal-

ysis of break points in Chinese radiosonde data]. To

do this we first cluster the break points because the

same break is not located at exactly the same time in

different members of the homogenization ensemble.

First, we take the count of breaks occurring in each

year from the 100 members. Starting from the largest

concentration we then attribute breaks located within

two calendar years (the default minimum break-point

separation in the break-point detection algorithm) to

that particular break point, and then repeat for the next

largest concentration of breaks. An example of the

distribution of breaks identified in the 100-member

homogenization is shown in Fig. 7. It is immediately

apparent that there is a high degree of consistency in

the location and sign of the breaks, although the ad-

justment magnitude can differ considerably between

ensemble members (see also Guo et al. 2008; Titchner

et al. 2009).

The identified sign and location of break points in

Fig. 7 are also broadly consistent for temperature and

the two humidity variables. Even with a small number of

break points the resultant uncertainty on the trend in an

individual station time series is large. For the example

shown in Fig. 7, the adjusted best-guess trends are

0.25 K decade21, 0.53% decade21, and 0.16 g kg21

decade21 for temperature and relative and specific hu-

midity, respectively. The 95% range of trend estimates

for the 100 homogenization experiments at 850 hPa is

0.3 K decade21 for temperature, 1.7% decade21 for

relative humidity, and 0.1 g kg21 decade21 for specific

humidity.

First-guess adjustments for Lindenberg were imple-

mented for a change in 1986 associated with a switch in

radiosondes from RKZ5 to MARS, and a subsequent

change from MARS to Vaisala in 1991 (see also

Fig. 5). The neighbor-based homogenization modifies

both of these adjustments, introducing much larger

temperature adjustments at both and offsetting the

humidity change in 1986. Some of the homogeniza-

tions also reduce the magnitude of the 1991 change. A

humidity correction in the 1970s has been imple-

mented at different times for relative and specific

humidity, and an additional correction to specific hu-

midity is applied in 1980. Inconsistencies such as these

are inevitable in the homogenization scheme utilized

here, but are encapsulated in the uncertainty from the

100-member ensemble of experiments. This approach

is highly unlikely to be suitable for the analysis of

trends in individual station records. If such local or

regional detail is required, then a much more rigorous

assessment would be required. Over large scales the

noise resulting from localized natural and synthetic

FIG. 7. Time series of break points identified for Lindenberg at

850 hPa. Each cross represents the location and estimated magni-

tude of a break identified by a single member of the ensemble of

100 homogenizations applied to the data. The adjustment time

series for the best guess of the ensemble (solid line; see text), the

adjustment time series from the first-guess corrections (dashed

line), the spread of adjustment time series for the 100 homogeni-

zations (gray shading), and the location of recorded metadata

events (triangles) are shown.
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events will be reduced, making the detection and

quantification of uncertainty of small climate signals

more likely.

The impact of homogenization on trends at 850 hPa is

shown in Fig. 8. The first-guess corrections resulting

from a number of Russian radiosonde model changes

increase the daytime warming trends, consistent with

a reduction in the day–night bias resulting from im-

provements to the instrument housing and solar radia-

tion corrections (e.g., Luers and Eskridge 1998). The

relatively large adjustment to the trend results from the

cumulative impact of the adjustments (presented in

Table C1). Both relative and specific humidity trends are

increased by the first-guess adjustments over parts of

Europe, Asia, and Alaska. The subsequent homogeni-

zation shows a mixed signal, but tends to reduce tem-

perature and humidity trends over parts of Europe. The

estimated gridbox uncertainties are large, and generally

larger than the magnitude of the trends, demonstrating

the limited scope for diagnosing trends in small regions

or for individual stations.

5. Trends and uncertainty

The net impact of the interpolation and homogeni-

zation of the dataset is shown in Fig. 9. The maps illus-

trate the spatial impact of the homogenization and are

not meant to suggest that we have faith in trends at

individual grid cells. Most notably, an apparent drying

over Europe and Japan is removed. Increased temper-

ature trends at high latitudes are a result of the inclusion

of the ‘‘missing’’ humidity temperatures (i.e., the un-

adjusted data include only temperature data where

humidity observations also exist, while the adjusted

data include all temperature data and interpolated hu-

midity) and the adjustment to Russian temperatures

(Figs. 8a and 9c). There is still a degree of spatial het-

erogeneity, with a few large individual outliers, reflect-

ing the large uncertainty at the gridbox level shown in

Fig. 9. Despite this, the homogenized data show more

widespread warming, smaller trends in relative humid-

ity, and larger trends in specific humidity than the un-

adjusted data.

FIG. 8. Difference in trends between first-guess adjusted data and the unadjusted data for (a) T, (d) RH, and (g) q. (b),(e),(h) As in

(a),(d), and (g), but for the difference between the best-guess homogenized dataset and the first-guess adjusted data. (c),(f),(i) The

uncertainty in gridbox mean trends from the 100-member ensemble of homogenizations.
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In Fig. 10 we show trend profiles for the area-

weighted average of the Northern Hemisphere extra-

tropics (north of 208N). The uncertainties represent the

total homogenization uncertainty, but do not account

for other sources, such as spatial sampling. The ho-

mogenization results in increased daytime warming

trends. The improved agreement between the daytime

and nighttime data for both temperature and specific

humidity is encouraging and would be expected given

the known solar radiation biases that afflict the day-

time radiosonde launches (Sherwood et al. 2005; Randel

and Wu 2006). The profile of extratropical temperature

trends are broadly consistent with previously published

observational and model results (Santer et al. 2006).

The largest warming of the surface relative to the tropo-

sphere occurs at high latitudes. These results cannot help

to address issues relating to tropical upper-tropospheric

warming rates. Relative humidity trends are reduced to

close to zero at most levels. Specific humidity increases,

accounting for the associated uncertainty, at levels above

the surface are within the expectation of moistening at

a rate that is consistent with maintaining relative hu-

midity. Small negative trends in relative humidity do

persist at the lowest levels, suggesting the possibility that

moistening near the surface does not balance the

warming at this level.

Idealized GCM experiments have shown that limits

to local evaporation and moisture convergence over

land occurring at levels colder than the surface act to

reduce relative humidity in the boundary layer over

land, and enhance the land–sea temperature contrast

under warming scenarios (Joshi et al. 2008). The HadTH

data are predominantly sampled over land; therefore,

a small reduction in near-surface relative humidity in

HadTH could be consistent with GCM simulations of

local feedbacks of the hydrological cycle over land un-

der recent warming, but the uncertainties associated

with the observations are still too large to reject the null

hypothesis of zero change in relative humidity.

The radiosonde records compare well with equiva-

lently sampled surface data records, shown in Fig. 11,

using the HadTH radiosonde surface level, the Hadley

FIG. 9. Linear trends at 850 hPa in (a),(d),(g) unadjusted, (b),(e),(h) adjusted, and (c),(f),(j) adjusted minus unadjusted HadTH

(a)–(c) temperature, (d)–(f) relative humidity, and (g)–(i) specific humidity.
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Centre and Climate Research Unit gridded near-surface

temperature dataset (HadCRUT; Brohan et al. 2006),

and the Hadley Centre and Climate Research Unit

global surface humidity dataset (HadCRUH; Willett

et al. 2008). The HadCRUT and HadCRUH have been

sampled only at locations and times that exist within the

radiosonde HadTH dataset. A discrepancy exists be-

tween the estimates of near-surface relative humidity

trends. Closer analysis of the time series suggests that

the difference in relative humidity trends is a result of

a steplike change in the difference between HadTH and

HadCRUH around 1992, and agreement is better for the

preceding and following periods. It is beyond the scope

of this investigation to suggest a resolution, but HadTH

uncertainty does encapsulate the HadCRUH trend

magnitude.

6. Conclusions

We have conducted an analysis of the long-term re-

cord of humidity from Northern Hemisphere radio-

sonde stations. The unadjusted observations are plagued

by large, spurious step changes resulting from improve-

ments to the measurement, observing, and archiving

practices over time. These activities have tended to result

in similar impacts on station humidity trends resulting

in an apparent reduction in relative humidity at many

stations in the network. These coherent biases are dif-

ficult for some traditional homogenization methods to

identify and appropriately correct. We use a combina-

tion of interpolation to remove temporally varying

sampling bias, a crude first-guess adjustment, and a more

sophisticated neighbor-based homogenization in an at-

tempt to investigate the robustness of the apparent

trends in the radiosonde humidity record.

Following the adjustment process the daytime tem-

perature and specific humidity trends are increased and

more consistent with the nighttime trends and are in the

range of 0.1–0.4 K decade21. Relative humidity trends

are reduced from a negative value in the unadjusted data

to near zero. Trends at the surface agree well with al-

ternative surface-based estimates of temperature and

humidity, although a discrepancy in the near-surface

relative humidity is apparent.

Based on the available evidence we cannot reject

the underlying hypothesis that under recent climate

change the average tropospheric relative humidity in

the Northern Hemisphere remains unchanged while

temperature and specific humidity increase. Specific

humidity increases since 1970 are on the order of 1%–

5% decade21. Further rigorous analysis is required to

better understand the uncertainty and more confidently

FIG. 10. Vertical profile of trends for T, RH, and q for day (red) and night (black) data for

area-weighted means of data between 208 and 708N. Solid lines are the best-guess adjusted data,

with error bars denoting the spread of estimates from 100 homogenizations. The dotted lines

are the unadjusted trends. Trends for HadCRUT3 and HadCRUH (see text) are also shown

with their statistical fit uncertainty.
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assess the magnitude of tropospheric temperature and

humidity trends. Multivariable analyses of the radio-

sonde record, including humidity and winds [e.g., see

Allen and Sherwood (2008) for a novel use of wind ob-

servations] may also provide crucial additional evidence

to aid the detection and adjustment of the previously

well-studied, but still highly uncertain, temperature

records.
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APPENDIX A

Calculating Humidity Variables

Radiosondes measure relative humidity, but standard

practice for reporting radiosonde data across the global

telecommunications system has been for dewpoint mea-

surements, so it is this variable that dominates the his-

torical archives. Daily temperature and dewpoint [8C; T

in Eq. (1) below] were used respectively to calculate

saturated and actual vapor pressure e from a modified

version of the Magnus formula for vapor pressure over

liquid water (Buck 1981),

e 5 6.1121 3 f 3 EXP
18.729� T

227.3

� �
T

257.87

2
4

3
5. (A1)

The enhancement factor ( f ) requires pressure p (hPa)

and is defined in Eq. (A2),

f 5 1.0007 1 3.46 3 10�6p. (A2)

The relative humidity is defined as the ratio of the vapor

pressure to the saturated vapor pressure. Vapor pres-

sure calculated from dewpoint temperature was used

to determine the specific humidity q (g kg21) from

Eq. (A3),

q 5
622e

p� 0.378e
. (A3)

APPENDIX B

Case-Study Stations

To test the methods for interpolating missing data to

reduce sampling bias, a set of 24 stations listed in Table B1

were used.

APPENDIX C

First-Guess Homogenization

Before applying the full homogenization, a first guess

of break points resulting from known instrument changes

was conducted. Table C1 lists the instrument changes

that were identified as occurring in at least four stations

within the radiosonde archive. For ease of reference

TABLE B1. Test-case stations used in the determination of residual bias and uncertainty following the interpolation of missing data.

Station number, location Country Latitude (8) Longitude (8)

02963, Jokioinen Finland 60.82 23.50

03808, Camborne United Kingdom 50.22 25.32

06610, Payerne Switzerland 46.82 6.95

07510, Bordeaux France 44.83 20.68

08495, Gibraltar Gibraltar 36.15 25.35

10393, Lindenberg Germany 52.22 14.12

10410, Essen Germany 51.40 6.97

11520, Praha/Libus Czech Republic 50.00 14.45

11952, Poprad/Ganovce Slovakia 49.03 20.32

12843, Budapest/Lorinc Hungary 47.43 19.18

16320, Brindisi Italy 40.65 17.95

22550, Arkhangelsk Russia 64.58 40.50

24266, Verkhoyansk Russia 67.55 133.38

27459, Niznij Novgorod Russia 56.27 44.00

31736, Khabarovsk Russia 48.53 135.23

40179, Bet Dagan Israel 32.00 34.82

40375, Tabouk Saudi Arabia 28.37 36.58

47991, Minamitorishima Japan 24.30 153.97

54342, Shenyang China 41.82 123.55

57494, Wuhan China 30.63 114.07

58238, Nanjing China 32.00 118.80

60390, Dar-el-beida Algeria 36.72 3.25

61641, Dakar/Yoff Senegal 14.73 217.5

71600, Sable Island Canada 43.93 260.02
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the changes have been separated broadly into countries

and the approximate year or years of the change are sup-

plied. The values represent the average adjustment ap-

plied across the available pressure levels. For example,

a value of 12.0% in relative humidity means that the

monthly mean relative humidity anomalies prior to the

break point are increased by an average value of 2.0%,

but the actual adjustments applied at each level will

differ from this value. The figures in Table C1 are meant

to be illustrative of the sign and magnitude of the ad-

justments being made, rather than fully comprehensive.
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